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ABSTRACT. Recent developments in the use of machine learning methods for causal infer-
ence typically target the average treatment effect (ATE) and frequently rely on estimating
a propensity score using nonparametric regression learners and inverting it to plug into the
doubly-robust IPW score. In observational studies, however, the ATE is frequently difficult
to target because of the failure of overlap, which is compounded by the inversion step; re-
searchers often target the average treatment effect on the treated (ATT) in such cases. We
propose a unified framework for augmented balancing estimators for the ATT in a wide va-
riety of research designs used by in the social sciences, including cross-sectional, two-period
difference in differences, and longitudinal data settings. These estimators combine flexible
nonparametric outcome models for the response surface with with balancing weights that
directly targets in-sample covariate balance using an empirical risk minimization (ERM)
procedure, and provide a software implementation in the R package abal. In simulation
studies, we find that balancing weights outperform a wide variety of commonly used estima-
tors, including AIPW estimators that involve inverting a propensity score. We conclude with
empirical applications.
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1. Introduction

For many social scientific questions, researchers face the challenging task of disentangling
the causal effects from confounding factors that may influence both the treatment assign-
ment and the outcome of interest. Researchers are increasingly careful about stating their
target estimand and the assumptions that allows them to identify it using data. For exam-
ple, in cross sectional settings, it is well known that nonparametric identification requires
both unconfoundedness and overlap. While flexible covariate adjustment with many con-
trols and flexible functional form has been popularized as ‘double machine learning’ (Cher-
nozhukov et al., 2018), overlap is discussed less often, and is particularly challenging in
observational research where many units may have negligible probability of treatment. As
a result, the Average Treatment effect on the Treated (ATT) is a commonly targeted esti-
mand in a wide variety of observational settings where the propensity score is may be zero
for a substantial share of units.

In this paper, we propose a unified framework for augmented balancing estimators for the
ATT in a wide variety of research designs used by in the social sciences. The framework
begins with the key ingredient of the modern semiparametric (‘double machine learning’)
approach to causal inference, which is the use of multiple flexible models to fit both the out-
come (henceforth outcome model) and treatment assignment (henceforth treatment model),
which has the appealing ‘double-robustness’ property of yielding consistent estimates if
one of the two is correctly specified1. It departs from the standard Augmented Inverse-
Propensity Weighting (AIPW) approach (Robins, Rotnitzky, and Zhao, 1994; Hahn, 1998)
by replacing the inverse propensity score, which greatly magnifies bias under misspecifica-
tion (Kang and Schafer, 2007), with balancing scores that directly optimize for in-sample
balance and have been show to posess superior finite sample properties (Hainmueller, 2012;
Zubizarreta, 2015; Zhao and Percival, 2016; Hirshberg and Wager, 2021). With this recipe
in hand, we propose augmented balancing estimators for the ATT in cross-sectional, two-
period difference in differences, and panel data settings, and provide an accompanying R
package abal.

We contribute to a growing literature on the use of machine learning methods for causal in-
ference, and a closely related literature on the use of balancing (‘synthetic control’) weights
for panel data. The former strand of the literature has largely focussed on estimating causal
effects in cross-sectional settings under unconfoundedness (Robinson, 1988; Robins, Rot-
nitzky, and Zhao, 1994; Hahn, 1998; Chernozhukov et al., 2018), and has only recently
been extended to related research designs with panel data (Abadie, 2005; Sant’Anna and
Zhao, 2020; Ben-Michael, Feller, and Rothstein, 2021). The latter literature focuses on spe-
cific problems that arise in the panel data setting (Abadie and Gardeazabal, 2003; Abadie,
Diamond, and Hainmueller, 2010; Doudchenko and Imbens, 2016; Athey et al., 2021). By
nesting these problems in a common framework and providing an exposition of the core

1Parameters that characterize the outcome and treatment model are nuisance parameters. This property is
generalized into a family of ‘Neyman Orthogonal’ scores by Chernozhukov et al. (2018) and Chernozhukov
et al. (2022) that are robust to local perturbations in the nuisance parameters around their true values.
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identification assumptions and their implications, and producing a performant software im-
plementation that implements a wide variety of thesemethods through a common interface,
we hope to make this powerful set of methods more accessible to applied researchers, as
well as to spur future methodological research in the use of combining multiple modelling
stratigies to conduct robust causal inference.

2. Methodology

We observe IID draws of units from a large population with measurements (Yit,Wit,Xi) ∈
R×{0, 1}×X where Yit is a T− vector of outcomes,Wit is a treatment dummy, and Xi is a d−
vector of baseline covariates taking values in the covariate space X ⊆ Rd. i ∈ [N ] indexes
units and t ∈ [T ] indexes time periods, with T being the total number of time periods.
When T = 1, the data is said to be cross-sectional, and we drop the second subscript; while
for T > 1, it is said to be panel. We partition the units into Treated T := {i : Wi = 1}
and Control C := {i : Wi = 0}, with nt = |T | and nc = |C| corresponding with the number
of treatment and control units respectively. We define the fraction of treated units in the
sample as ρ = nt/n.

Some additional pieces of notation will be used repeatedly henceforth. Two key nuisance
functions are the propensity score and outcome model. The propensity score is the condi-
tional probability of receiving the treatment π(x) := E [W |X] = Pr (W = 1|X = x). Also, de-
fine, for each treatment levelw, a corresponding regression function µ(w) (x) = E

[
Y (w)|X = x

]
,

which we also refer to as the outcome model. Estimators for these functions, π̂(·), µ̂(·) are
to be fit using flexible nonparametric/machine-learning estimators. A superscript on a nui-
sance function µ̂(w) means that the model is fit on the sub-sample with treatment level w
only.

In the current paper, the estimand is the Average Treatment Effect on the Treated (ATT),
which is the average difference between potential outcomes for the treated group during
treated periods (which the only period in the cross sectional setting, second period in the
two-period setting, and an arbitrary share of periods in the panel setting).

τATT = E
[
Y

(1)
iT |WiT = 1

]
− E

[
Y

(0)
iT |WiT = 1

]
(2.1)

The ATT is a more modest but realistic goal in observational work wherein one takes as-
signment as given and seeks to estimate the treatment effect (average difference between
treated and control potential outcomes) for treated units. It is often an alternative to target-
ing the average treatment effect (ATE) in the presence of units with very small propensity
scores π(x) ≈ 0, which makes the computation of E

[
Y (1)

]
infeasible, or at best extremely

imprecise thanks to the presence of 1/π(x) in the semiparametrically efficient variance
(Hahn, 1998). The treated potential outcome Y (1)

it is observed for treated units, so the
learning problem amounts to constructing an estimator for the counterfactual potential
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outcome for treated units E
[
Y

(0)
iT |WiT = 1

]
in the absence of treatment, which we refer to

as ξ̂ henceforth.

Different estimators for the control potential outcome mean ξ̂ := Ê
(
Y

(0)
iT |WiT = 1

)
can

be constructed under different identification assumptions depending on the data at hand,
which we turn to next.

2.1. Cross-sectional Setting. In this section, we drop the time subscript because
T = 1. Since we only have access to one period, and as such only observe Y 1 ∀i ∈ T and
Y 0 ∀i ∈ C, imputing counterfactual means necessitates versions of well-known selection-
on-observables assumptions (see Imbens (2004) for a review).

Assumption 1 (No Interference / Stable Unit Treatment Value Assumption (SUTVA)).
This assumption asserts that a unit’s realized outcome is generated as

Yi = WiY
(1) + (1−Wi)Y

(0) (2.2)

This imposes that each unit i has two potential outcomes Y (1), Y (0) corresponding with unit
i’s treatment states, and not any other units. This rules out unit i’s outcomes being affected
by unit j’s assignment ∀i ̸= j ∈ [N ].

The corresponding individual level treatment effect is τi := Y (1) − Y (0), which is unidenti-
fiable because only one of the two potential outcomes are revealed for any given unit i due
to the Fundamental Problem of Causal Inference. We are interested in estimating the ATT,
which is the average of τis in the treated group T .

Assumption 2 (Unconfoundedness for Controls).

Y (0) ⊥⊥ W |Xi (2.3)

We assume that the control potential outcome Y (0) is independent of the treatment condi-
tional on baseline covariates. This can be weakened to mean independence for control
E
[
Y (0)|W,X

]
= E

[
Y (0)|X

]
, however it is difficult to construct examples where mean inde-

pendence holds but unconfoundedness doesn’t.

Assumption 3 (Weak Overlap).

Pr (W = 1|X) < 1 a.s. (2.4)

This imposes that there are no covariate profiles X wherein the treatment is deterministic,
since that would mean that we cannot find comparable control units and must therefore
rely on extrapolation.
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Under assumptions 1, 2, and 3, the counterfactual mean under control for treated units
Ê[Y 0|W = 1] is nonparametrically identified and can be constructed using observed data(Heckman,
Ichimura, and Todd, 1998). Estimators for Ê[Y 0|W = 1] take one of three forms: Regression
(R), Weighting (W), or Hybrid approaches (H).

2.1.1. Outcome Modelling. The Regression approach involves fitting an outcome model
µ(0)(Xi) on control outcomes, and projecting it on all units. This gives us the following
regression estimator for the average control potential outcome for the treated

ξ̂OM :=
1

nt

∑
i∈T

µ̂(0)(Xi) (2.5)

where the imputed potential outcomes µ̂(0)are averaged over treated units T alone, with the
control units used solely to fit µ̂(0). Consistency hinges on the model µ̂(0) being correctly
specified, and as such flexible regression estimators are preferred. Outcome modelling
also be viewed as a re-weighting estimator (Kline, 2011; Chattopadhyay and Zubizarreta,
2021; Bruns-Smith et al., 2023). For the ATT, the weight for each control unit i is γRegi =

(Xi − Xc)
′(Σ̂0)

−1(Xt − Xc) where Xt,Xc are covariate means in the treatment and control
groups respectively, and Σ̂0 is the scaled covariance matrix in the control group. These
weights exactly balance the elements of Xi across T and C if π(X)

1−π(X) = X′
iγ.

2.1.2. Reweighting. An important implication of the unconfoundedness assumption 2 is
that treatment and control units are balanced on observable covariates. In a seminal paper,
Rosenbaum and Rubin (1983) show that a scalar γ is said to be a balancing score if it satisfies
conditional independence between treatment and covariates; in other words, Y (0) ⊥⊥ W |X
is equivalent to Y (0) ⊥⊥ W |γ, which performs dimension reduction2. We seek weights γ that
satisfy the following conditions

Population Balance : E [WX] = E [γ(1−W )X] (2.6)

Sample Balance :
1

nt

∑
i∈T

Xi =
1

nc

∑
i∈C

γiXi (2.7)

where the latter sample balance condition 2.1 is the feasible condition that can be verified
using observed data. This allows us to construct estimators for the average control potential
outcome for the treated

ξwt =
∑
i∈C

γiYi (2.8)

2this is a modified version of the statement in RR1983, which is interested in the Average Treatment Effect
(ATE) and therefore focuses on full unconfoundedness Y (1), Y (0) ⊥⊥ W |X
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Methods for constructing γ include modelling, such as by fitting a model for the propensity
score π(x), or by solving the above balance condition directly. Matching estimators (Heck-
man, Ichimura, and Todd, 1998; Smith and Todd, 2005; Abadie and Imbens, 2006) are a
special case of the above formulation where the weights γi are chosen separately for each
treated observation i and are constrained to be nonzero for the k best matches.

To estimate these weights, wemay first want to characterize the error of a general weighting
estimator for the control potential outcome E

[
Y (0)

]
, which takes the form 2.8. The error

of this estimator can be decomposed in the vein of Ben-Michael et al. (2021) as

ξ̂wt − ξ =

Bias from Imbalance︷ ︸︸ ︷
1

n

∑
i

(1−Wi)γ̂iµ
(0)(xi)−

1

n

∑
i

Wiµ
(0)(xi)−

1

n

n∑
i=1

(1−Wi)γiεi︸ ︷︷ ︸
Noise

+

Sampling︷ ︸︸ ︷
1

n

n∑
i=1

Wiµ̂
(0)(xi)− ξ

(2.9)

where the second two terms are a weighted average of sampling noise and sampling varia-
tion, which means that the design-conditional bias is the first term. The decomposition in
2.9 also clearly emphasizes that a weighting based estimator of the missing counterfactual
is intrinsically tied to the unknown conditional mean function µ(0)(xi): the balancing ap-
proach implicitly requires one to take a stand on themodel classM of the conditional mean
µ(0) we are trying to model.

2.1.2.1. Modelling the Propensity Score. The Rosenbaum and Rubin (1983) balancing
result shows that for the ATT, the asymptotically balancing weight is

γi =
E [W = 1 | Xi]

E [W = 0 | Xi]
=

E [W = 1 | Xi]

1− E [W = 1 | Xi]

The most direct and widely used implementation of this approach is via Inverse Propensity
Weighting, which uses the plug-in approach to fit a (typically parametric) model for the
propensity score π(X) := Pr (W = 1|X) and plug in these predicted probabilities to construct
the sample analogue of the above population quantity . Imai and Ratkovic (2014) show
that using logistic γIPWi = π̂(Xi)/[1− π̂(Xi)] regression to estimate the propensity score has
a balancing interpretation, where weights are calculated to balance a particular function of
covariates. We extend the result in 2.1.

Proposition 2.1 (Balancing interpretation of Logistic Propensity Score).
Parametric propensity score modelling involves estimating Pr (Wi = 1 | Xi) = F (X⊤

i β) as a
linear predictor passed through a link function F where F (·) : R→[0, 1], where the most
popular choice is F (·) = Λ(·) := exp(·)

1+exp(·) using logit regression. This gives rise the following
log-likelihood
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logL =
n∑

i=1

{
Wi logΛ(X⊤

i β) + (1−Wi) log(1− Λ(X⊤
i β))

}
Differentiate for Likelihood Eq

∂ logL
∂β

=
n∑

i=1

{
Wi

Λ′(X⊤
i β)

Λ(X⊤
i β)

− (1−Wi)
Λ′(X⊤

i β)

1− Λ(X⊤
i β)

}
= 0

=
n∑

i=1

{
Wi

Λ(X⊤
i β)

− 1−Wi

1− Λ(X⊤
i β)

}
Λ′(X⊤

i β) = 0

where Λ′(·) =: λ(·) is the density dΛ(X⊤
i β)/d(X⊤

i β). Imai and Ratkovic (2014) therefore
conclude that estimating the propensity score by maximum likelihood balances a particular
function of the covariates: the first derivative of the link function f(X⊤

i β). For logistic
regression, we can claim something stronger: using properties of the logistic distribution,
we can plug in f(X⊤

i β) = Λ′(X⊤
i β) = Λ(X⊤

i β)(1 − Λ(X⊤
i β)) allows us to see that that the

function being balanced across the two groups is the estimated propensity score itself

n∑
i=1

{
Wi

Λ(X⊤
i β)

− 1−Wi

1− Λ(X⊤
i β)

}
Λ(X⊤

i β)(1− Λ(X⊤
i β)) = 0

This implies that instead of balancing covariates moments (which is often the informally
stated goal of reweighting), logistic regression relies entirely on the dimension reduction of
covariates via the link function and balances on Λ(X⊤

i β) (and its complement 1−Λ(X⊤
i β)).

From Rosenbaum and Rubin (1983), we know that conditioning on the true propensity
score is equivalent to conditioning on covariates under selection on observables, so when
π(X) is correctly specified as Λ(X⊤

i β), balancing on the logistic propensity score is sufficient.
However, if the propensity score is misspecified (i.e. the true propensity score cannot be ap-
proximated by Λ(X⊤

i β), balancing on Λ(X⊤
i β)(1 − Λ(X⊤

i β)) provides no guarantees about
balance along covariates, and indeed may worsen balance since Λ(X⊤

i β) is now simply a
low-dimensional summary statistic of covariates, with especially high weights placed on
covariates that predict treatment assignment. Therefore, solving for weights that directly
balance covariates are preferable over the logistic propensity score under (likely) misspec-
ification.

2.1.2.2. Balancing. In 2.1, we saw that modelling the propensity score without explicitly
prioritising balance may yield poor properties under misspecification. This is related to the
empirical observation that by inverting 1− π̂(Xi), one risks magnifying estimation errors in
π̂, and therefore incurring considerable bias. An alternative set of methods seek to solve for
weights γ by solving the sample balance condition 2.7 directly.

Weights that solve the sample balance condition are known as covariate-balancing propen-
sity scores (CBPS) following Imai and Ratkovic (2014). These may be specified to mimic
propensity scores and be characterised by a finite dimensional parameter vector 1/πβ(Xi),



8 AUGMENTED BALANCING FOR ATT

as in the Imai and Ratkovic work. Alternatively, they can be characterized as solutions to a
mathematical program

Defn 2.1 (Sample Balance Program).

min
γ

=
∑
i∈C

h(γi) s.t. (2.10)∣∣∣∣∣ 1nc

∑
i∈C

γiϕk(Xi) =
1

nt

∑
i∈T

ϕk(Xi)

∣∣∣∣∣ ≤ δk k = [K] (2.11)∑
i∈C

γi = 1 (2.12)∑
i∈C

γi ≥ 0 (2.13)

where h(γi) is a convex loss function of the weights, and condition 2.11 asserts that covariate
basis functions ϕk(·), k = {1, . . . , K} (including but not limited to moments of covariates Xi)
are balanced across treatment and control groups within tolerance 3 δk, which is chosen to
be exactly zero when Xi is low-dimensional but is infeasible in high dimensions. Condition
2.12 ensures that weights sum to 1 in the treated group. Condition 2.13 is an optional non-
negativity constraint that forces the weights to be on a |C| dimensional simplex and avoids
extrapolation.

Intuitively, we want to solve for a set of weights that depart minimally from uniform weights
of 1/nc while guaranteeing us sample balance, which motivates the term ‘minimal weights’
(Wang and Zubizarreta, 2019). This framework nests entropy balancing (Hainmueller,
2012) with h(x) = x logx, quadratic balancing (Zubizarreta, 2015), with h(x) = (x −
1/nc)

2. The constrained optimization problem can be posed as a Generalized Empirical
Likelihood (GEL) problem (Imbens2002-mr)4. Solving the constrained optimization prob-
lem targets a nc vector, which is computationally challenging because of the saddle-point
structure of the GEL problem. However, since h is convex, the corresponding dual for the
balancing problem is unconstrained and can be solved much more easily. Wang and Zu-
bizarreta (2019)[Thm 1] show that the dual unconstrained problem takes on the following
form

3which can be substantively motivated or chosen to be a scalar if the Xi are scaled to be on the unit interval
or normalized beforehand, which is advised for numerical stability
4where choices of h(·) correspond with different choices of λ in the Cressie-Read divergence

lλ(p, q) :=
1

λ(1 + λ)

n∑
i=1

pi

[(
pi
qi

)λ

− 1

]
. with base weights qi set to uniform. Entropy balancing corresponds with the Exponential tilting λ = 0, which
minimizes the Kullback-Liebler distance between uniform and EL weights. Quadratic balancing corresponds
with the Euclidian likelihood estimator (λ = −2).
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λ∗ = argmin
λ

− 1

nc

∑
i∈C

(
ρ(ϕ(Xi)

⊤λ)
)
+

1

nt

∑
i∈T

ϕ(Xi)
⊤λ+ |λ|⊤ δ︸ ︷︷ ︸

imbalance / regularisation

γ∗ = ρ′(ϕ(Xi)
⊤λ)∗)

Where λ is a K−vector of dual variables (lagrange multipliers) from the constrained opti-
mization problem, and ρ(·) is a transformation of the loss function h(·) from the constrained
problem, and the final weights γ are given by evaluating the ρ′(·) function at the solution
coefficients λ∗. Special cases include h(x) = x logx → ρ(x) = exp(x − 1) = ρ′(x) for en-
tropy balancing and h(x) = (x − 1/nc)

2 =⇒ ρ(x) = −x2/4 + x/nc, ρ
′(x) = −x2 + 1/nc

for quadratic balancing. The dual formulation can be solved using modern optimization
tools using either first-order (gradient descent and related) as well as Gauss-Newton or
quasi-Newton methods. We include a performant implementation in the accompanying R
package abal.

2.1.3. Hybrid. A final category of methods combine Regression and Weighting methods
and aim for consistency when either the outcome model or weights are well specified,
which is well known as the double-robustness property (Bang and Robins, 2005). When
stated in terms of score functions (i.e. moment conditions that characterize the solution
for the estimand), an estimator is said to be Neyman-Orthogonal if its directional deriva-
tive with respect to its nuisance parameters (outcome model and propensity score) is zero
(Chernozhukov et al., 2018). Doubly-robust estimators are based on Neyman-orthogonal
scores.

The most well known of these is the Augmented Inverse-Propensity Weighting (AIPW) es-
timator for the ATE (Robins, Rotnitzky, and Zhao, 1994; Hahn, 1998), and its analogue
for the ATT, which are constructed from Neyman-Orthogonal moment conditions (Cher-
nozhukov et al., 2018). This approach proposes the following estimator for the ATT

τ̂AIPW =
1

n−1
∑
i

Wi︸ ︷︷ ︸
nt/n=:ρ̂

1

n

∑
i

Wi

{
Yi − µ̂(0)(Xi)

}
− (1−Wi)

π̂(Xi)

1− π̂(Xi)

{
Yi − µ̂(0)(Xi)

}
(2.14)

where we define the share of treated units nt/n as ρ̂ and note that the inverse propensity
weights π̂(Xi)/(1− π̂(Xi) are used to re-weight the residuals for the control units.

The expression in 2.14 can be partitioned into estimators for the two average potential
outcomes for the treated as follows
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τ̂AIPW =

Ê[Y (1)|W=1]︷ ︸︸ ︷
1

ρ̂

1

n

∑
i

WiYi −
1

ρ̂

1

n

∑
i


Regression︷ ︸︸ ︷

Wiµ̂
(0)(Xi)+

Weighting︷ ︸︸ ︷
(1−Wi)

π̂(Xi)

1− π̂(Xi)

{
Yi − µ̂(0)(Xi)

}


︸ ︷︷ ︸
Ê[Y (0)|W=1]

(2.15)

ξ̂AIPW =
1

ρ̂

1

n

∑
i∈T

µ̂(0)(Xi)︸ ︷︷ ︸
Reg

+
1

ρ̂

1

n

∑
i∈C

π̂(Xi)

1− π̂(Xi)

{
Yi − µ̂(0)(Xi)

}
︸ ︷︷ ︸

Weighting

(2.16)

The final expression 2.16 clarifies that the AIPW estimator for the control potential outcome
Ê[Y (0)|W = 1] takes on the form of a regression imputation piece for treated units and an re-
weighting piece for control units, which is similar in structure to the bias-corrected match-
ing estimator of Abadie and Imbens (2011) (wherein the latter applies uniform weights to
units in the matched set for any treated observation i).

While existing work typically uses propensity-score based weights π̂(Xi)/(1 − π̂(Xi) that
solve for γ̂i that solve the population balance condition 2.6, arguments favouring balanc-
ing weights 2.1.2.2 apply equally strongly here, which suggests a form for an augmented-
balancing estimator.

Defn 2.2 (Augmented Balancing Estimator).
The Augmented Balancing estimator estimates the average control potential outcome for
the treated as

ξ̂AUGBAL =
1

ρ̂

1

n

∑
i∈C

γi
{
Yi − µ̂(0)(Xi)

}
︸ ︷︷ ︸

Balancing

+
1

ρ̂

∑
i∈T

µ̂(0)(Xi)︸ ︷︷ ︸
Reg augmentation

(2.17)

where balancing weights γ̂i solve the finite-sample covariate balancing program 2.1 and
the outcome model µ̂(0) is fit using flexible nonparametric regression methods.

This improves upon balancing-based approaches such as Hainmueller (2012), Imai and
Ratkovic (2014), and Zhao and Percival (2016) which are doubly-robust for the ATT when
the outcome model is linear, but not otherwise, and therefore hinge largely on the spec-
ification of the implied treatment model. The augmented balancing estimator 2.17 fits a
separate outcome model flexibly, and therefore is doubly-robust when either the weights
are correctly specified, or if the outcome model is correctly specified. It is asymptotically
normal, semiparametrically efficient, and admits to a standard variance formula using the
influence function (Ben-Michael et al., 2021). The standard nonparametic bootstrap, as
well as multiplier bootstrap, are also available for variance estimation.
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Bruns-Smith et al. (2023) show that augmented balancing that combines linear models (e.g.
OLS, lasso, or ridge, potentially in some basis) with linear balancing (e.g. ℓ1 or ℓ2 linear
loss but not entropy loss) can be interpreted as undersmoothed linear regression imputation
estimator (for a given fixed choice of hyperparameter). shows that imposing the simplex
constraint is equivalent to sample-trimming to units that don’t have extreme propensity
scores. This provides an additional motivation for a non-linear balancing function (entropy
loss) and the simplex constraint; it cleanly separates the roles of the outcome model and
inverse weights to extrapolate and interpolate respectively.

2.2. Two-period Setting. To establish connections with the estimators in 2.1, we be-
gin with the simplest extension to cross-sectional data, wherein we have outcome data from
two periods for each observation i, which is commonly known as the two-period difference-
in-differences setting.

We write Y (w)
it to denote the potential outcomes Y (0), Y (1) for unit i at time t ∈ {0, 1} and Yit

to denote the realised outcome. We observe n IID copies of (Yi1, Yi0,Wi,Xi). We additionally
define the difference in realized outcomes between the two periods for a given unit i Yi1−Y0i
as ∆i. Some fraction ρ of units are treated in the second period. The estimand is the ATT
in the 2nd period

τATT2 = E
[
Y

(1)
i1 | W = 1

]
− E

[
Y

(0)
i1 |W = 1

]
As before, the treated counterfactual mean for treated units is observed, so the problem is
effectively that of constructing an estimator for the average control potential outcome for
treated units in the second period Ê

[
Y

(0)
i1 | W = 1

]
=: ξ̂.

Since control potential outcomes are observed for treated units for the pre-treatment period
t = 0, intuitively, the identification problem seems somewhat easier, and doesn’t require
selection on observables assumptions such as 2. Instead, one can resort to assumptions
about trends in potential outcomes.

Assumption 4 (Parallel Trends).

E
[
Y

(0)
i1 − Y

(0)
i0 | W = 1

]
= E

[
Y

(0)
i1 − Y

(0)
i0 | W = 0

]
(2.18)

In words, this requires that the trends in control potential outcomes Y (0) over time be
identical across treatment and control groups.

Assumption 5 (No Anticipation (Two-period version)).

E [Yi0 | Wi = 1] = E
[
Y

(0)
i0 | Wi = 0

]
(2.19)
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This requires that the treatment doesn’t affect outcomes before coming into effect. This
is frequently substantively justified by researchers with the claim that the timing of the
intervention was as good as random.

Under assumptions 1, 4, and 5, the average control potential outcome for treated units in
the second period is nonparametrically identified (Lechner, 2011). It can be estimated as

ξ̂DID =
1

|T |
∑
i∈T

Yi0︸ ︷︷ ︸
Baseline outcome for treated

+
1

|C|
∑
i∈C

∆i︸ ︷︷ ︸
Trend for control

(2.20)

which is the baseline outcome for the treated group offset by the trend in the control group.
This estimator’s simplicity has led to widespread adoption in applied work. However, as-
sumption 4 is a very strong one, and researchers frequently want to relax it or assume it
hold conditional on observable covariates.
Assumption 6 (Conditional Parallel Trends).

E
[
Y

(0)
i1 − Y

(0)
i0 | W = 1,X

]
= E

[
Y

(0)
i1 − Y

(0)
i0 | W = 0,X

]
(2.21)

This is a conditional version of 4, and as such requires that the trends in control potential
outcomes Y (0) over time be identical across treatment and control groups conditional on
baseline covariates X.

Abadie (2005) derives an alternative Difference-in-Differences estimator under assumptions
1, 3, 5, and 6 of the following form

τ̂ABADIE =
n∑

i=1

∆i
Wi − π̂(Xi)

1− π̂(Xi)
(2.22)

=
1

|T |
∑
i∈T

∆i︸ ︷︷ ︸
Diff in Treated

− 1

|C|
∑
i∈C

∆i
π̂(Xi)

1− π̂(Xi)︸ ︷︷ ︸
Wtd Diff in Control

(2.23)

which is clearly a re-weighted version of difference in differences. This scheme works by
weighting-down the distribution of Yi1−Yi0 for the control for those values of the covari-
ates X which are over-represented among the control (that is, with low π̂(Xi)/(1 − π̂(Xi)),
and conversely weighting-up Yi1−Yi0 for those values of the covariates under-represented
among the control (that is with high π̂(Xi)/(1− π̂(Xi)).

Further decomposing the second term in 2.23 gives us the following estimator for the coun-
terfactual mean ξ̂
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ξ̂ABADIE =
1

|T |
∑
i∈T

Yi0 +
1

|C|
∑
i∈C

π̂(Xi)

1− π̂(Xi)
(Yi1 − Yi0) (2.24)

where the first term is the average outcome for the treated group in the pre-treatment pe-
riod, and the second and third terms comprise of the trend in the control group re-weighted
by IPW weights. Comparing 2.24 to the augmented AIPW estimator 2.16 is instructive: it
suggests that the Abadie estimator can be viewed as an AIPW-style estimator with a com-
pound outcome model that combines pre-treatment outcomes for the treatment units and
both pre- and post-treatment outcomes for the control units. This uses both between-unit
and within-unit variation for the inverse-propensity weights and outcomes respectively.

2.2.1. Hybrid Estimators for Difference in Differences Designs. Consistency of the Abadie
estimator hinges on a well specified model for π̂(X); its score function is not Neyman-
orthogonal. Chang (2020) and Sant’Anna and Zhao (2020) propose doubly-robust difference-
in-differences estimators based on Neyman-orthogonal scores of the following form:

τ̂DR DID =
∑
i

(
∆i − µ̂0(Xi)

)
· Wi − π̂(Xi)

1− π̂(Xi)

=
∑
i∈T

(
∆i − µ̂0(Xi)

)
︸ ︷︷ ︸
Diff in Treated - debiasing

−
∑
i∈C

(
∆i − µ̂0(Xi)

) π̂(Xi)

1− π̂(Xi)︸ ︷︷ ︸
(Diff in Control - debiasing) × weights

where µ̂0(·) is an imputation model for the trend E
[
Y

(0)
i1 − Y

(0)
i0

]
fit on control units only.

This appends the Abadie estimator with an outcome model, which is an estimate of the
imputed change∆i learned from the control units. This implies the following counterfactual
mean estimator is

ξ̂DR DID =
∑
i∈T

Yi0 − µ̂0(Xi) +
∑
i∈C

(
∆i − µ̂0(Xi)

) π̂(Xi)

1− π̂(Xi)
(2.25)

where the first term is the average outcome for the treated group in the pre-treatment
period minus predicted change in the trend, and the second term is a weighted average of
the difference between realized change ∆i minus predicted change in the trend.

As with the cross-sectional setting, the IPWweights π̂(X)/(1−π̂(X) in 2.24 and 2.25 guaran-
tee asymptotic balance, but not necessarily in-sample balance. Furthermore, in difference
in differences settings, treated units are frequently quite unusual in terms of covariates
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relative to control units, which makes overlap challenging and means that the propensity
score is difficult to specify correctly.

Therefore, an alternative would be to use the balancing program 2.1 to solve for weights
that guarantee in-sample balance directly.
Defn 2.3 (Augmented Balancing Estimator for Difference-in-Differences).
The Augmented Balancing estimator estimates the average control potential outcome for
the treated Ê

[
Y

(0)
i1 | W = 1

]
as

ξ̂AUGBAL DID =
∑
i∈T

Yi0 − µ̂0(Xi) +
∑
i∈C

γi
(
∆i − µ̂0(Xi)

)
(2.26)

where balancing weights γ̂i solve the finite-sample covariate balancing program 2.1 and
the outcome model µ̂(0) is fit using flexible nonparametric regression methods.

The corresponding estimator for the ATT is

τ̂AUGBAL =
∑
i∈T

(
∆i − µ̂0(Xi)

)
−
∑
i∈C

γi
(
∆i − µ̂0(Xi)

)
(2.27)

The main limitation of two-period difference in differences is that the strategy hinges en-
tirely on the untestable parallel trends assumption; conditional parallel trends is undoubt-
edly weaker but similarly untestable. When panel data is available (with T ≥ 3) researchers
may use pre-treatment outcomes as a form of placebo check. One may evaluate the plausi-
bility of this assumption by plotting pre-treatment diffferences between treated and control
units to visually evaluate parallel trends, and run dynamic specifications of lags and leads of
the treatment regressed on the outcome, with the belief that null effect on leads is sugges-
tive of plausible parallel trends. If pre-treatment differences are present between treatment
and control units, additional balancing methods are called for, which we turn to next.

Secondly, the parallel trends assumption is inherently tied to a specific functional form
for the outcome Y (e.g. parallel trends levels implies non-parallel trends in logs, and so
on). The Changes-in-Changes approach of Athey and Imbens (2006) relaxes the strong
functional-form dependence of the parallel trends assumption in favour of a time-invariant
monontonicity assumption, but has seen limited use among applied researchers (potentially
because of the somewhat harder to interpret monotonicity assumption and challenges in
the incorporation of covariates).

2.3. Panel Data Setting. Finally, we consider the panel setting where we have T > 2
periods of data. We focus our attention on settings where the treatment is absorbing and
treated units are assigned to treatment at one point in time T0+15 For each unit, we observe
5we restrict our exposition to a single treatment time for notational simplicity, but the approach outlined below
can readily be extended to the staggered setting where treatment is assigned at one of G distinct adoption
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T−vectors of outcome Yit, treatmentWit), and (an optional) time-invariant covariate vector
Zi.

Since treatment is only ever implemented on a subset of observations at time T0 + 1, in
a slight abuse of notation we define a treatment indicator without a time subscript Wi :=∑T

i,t=1 1Wit>0 for each unit that takes a value of 1 only for units that were treated. Finally,
we partition the observations into Controls C := {i : Wi = 0} and Treated T := {i : Wi = 1}
with corresponding sizes N0, N1 respectively. To define potential outcomes in this setting,
we make a simplifying assumption that links treatments to outcomes in a restricted manner.

Assumption 7 (No Carryover).
We assume that for t− vectors Wi and W′

i such that the assignment in the t-th period is
the same Wit = W ′

it, the potential outcomes are the same Wit = W ′
it =⇒ Y W

it = Y W′
it .

This allows us to index the potential outcomes by a single binary argument w and write
Y

(w)
it as opposed to the entire treatment history Y (w)

it (Imbens and Arkhangelsky, 2021),
which in turn lets us represent the realised outcome using the familiar switching equation
Yit = WitY

(1)
it + (1−Wit)Y

(0)
it . The corresponding contemporaneous treatment effect is the

difference between two potential outcomes τit = Y
(1)
it −Y (0)

it , which is unidentifiable thanks
to the FPCI. Instead, our estimand is the ATT at each time after treatment T0 < t < T .

τATTpt = E
[
Y

(1)
it − Y

(0)
it |Wi = 1

]
; T0 < t ≤ T

This is the estimand in a variety of panel data settings, including the difference-in-differences
and synthetic control and matrix completion and event-study literature. These can be av-
eraged over time for an analogue to the cross-sectional τATT.

τATT =

∑
(i,t):Wit=1[Y

(1)
it − Y

(0)
it ]∑

i,tWit

Since E[Y (1)
it | Wi = 1] is identified for each treated unit, the estimation problem involves

estimating the counterfactual control potential outcome Y (0)
it . The control potential out-

comes can be written as a matrix Y0 with blocked structure, where the bottom right of the
matrix is missing for the treated units T .

dates/cohorts Gi ∈ A, where G = T ∪ ∞ = {1, . . . , T,∞}, where Gi = ∞ denotes units that were never
treated.
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Y1,1 Y1,2 . . . Y1,T0 Y1,T
Y2,1 Y2,2 . . . Y2,T0 Y2,T
... ...

YN0,1 YN0,2 . . . YN0,T0 YN0,T... ?
YN,1 YN,2 . . . YN,T0 ?


≡



X1,1 X1,2 . . . X1,T0 . . . Y1,T
X2,1 X2,2 . . . X2,T0 . . . Y2,T
... . . .

...
XN0,1 XN0,2 . . . XN0,T0 . . . YN0,T... . . . ?

︸ ︷︷ ︸
pre-treatment outcomes

XN1 XN2 . . . XNT0 . . . ?


=:

( X0 yn
X1 ?

)

(2.28)

where we stack the N0 outcome vectors for the control group followed by N1 outcome
vectors for the treated group, where the last T −T0 elements of the treated groups’ outcome
vectors are missing. We label pre-treatment outcomes for the control and treatment groups
as X0,X1 respectively to emphasize that pre-treatment outcomes serve the role of covariates
in the sequel, and control units’ post-treatment outcomes are stacked to form a matrix yn.

To construct estimators to fill in missing entries in Y0, we must make one of three broad
categories of assumptions: (1) parallel trends, (2) latent factor model for control potential
outcomes, or (3) unconfoundedness. The first corresponds with the most natural extension
of the two-period parallel trends assumption 4.

Assumption 8 (Parallel trends and additive separability of time and unit effects).

E
[
Y

(0)
it − Y

(0)
it′ |Wi = 1

]
= E

[
Y

(0)
it − Y

(0)
it′ |Wi = 0

]
∀ t ̸= t′

This assumption imposes that in the counterfactual where treatment had not been im-
plemented, the average outcomes for ever-treated groups would have evolved in parallel
with the outcomes for the never-treated groups. The parallel trends assumption is fre-
quently paired with the following representation for the control potential outcome Y (0)

it =
αi+γt+εit, which asserts that the potential outcome is additively separable into unit effects
αi and time effects γt.

Assumption 8 is the most widely used in applied research and is typically used to motivate
the following two-way fixed effects regression

Yit = τWit + αi + γt + εit (2.29)

where τ is interpreted as the ATT. This representation implies the following estimator for
the control potential outcome

ξ̂RegImpute
it := Ŷ 0

it = α̂i + γ̂t
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In staggered adoption settings, several recent papers have pointed out that the estimate τ̂
obtained from the above regression does not uncover the ATT or a convex-weighted average
of ATTs when treatment effects τit are heterogeneous and may in fact put negative weights
on the ATT in some cohorts (Goodman-Bacon, 2018; Callaway and Sant’Anna, 2020). The
inconvenient negative-weighting property of the two-way fixed effects specification under
staggered adoption can be remedied by fitting the fixed-effects regression 2.29 on control
observations alone {i, t : Wit = 0}, which purges the data of the comparisons that generate
negative weighting in the naive two-way fixed effects regression (Borusyak, Jaravel, and
Spiess, 2022; Liu, Wang, and Xu, 2021; Gardner, 2022).
Assumption 9 (Latent Factor Model for control potential outcomes).
Following the setup in Abadie, Diamond, and Hainmueller (2010), Xu (2017), and Ben-
Michael, Feller, and Rothstein (2021), assume there are J unknown latent time-varying
factors µt = {µjt} ∈ RT , j = 1, . . . , J , and each unit has an unknown set of factor loadings
ϕi ∈ RJ . The latent factor model asserts that control potential outcomes are generated as

Y
(0)
it =

J∑
j=1

ϕijµjt + εit ≡ Y(0)
i = ϕi ⊙ µt + εi

This is heuristically equivalent to a low-rank assumption on control potential outcomes
Y(0) where J < N, T . These latent factors can be estimated using the complete data [i.e.
entire time series for control units and pre-treatment data for treated units], with rank J
estimated using a (tailored) cross-validation procedure, as proposed in Xu (2017), or via
Nuclear-norm penalization as proposed in Athey et al. (2021). The latent factor model
assumption nests the two-way fixed-effects assumption for the control potential outcome
as a special case.

An influential series of papers uses this assumption to motivate the synthetic control method
(Abadie and Gardeazabal, 2003; Abadie, Diamond, and Hainmueller, 2010), constructs an
estimator for the control potential outcome using between-unit correlations across control
potential outcomes in the pre-treatment period.

γSC = argmin
γ

∥∥∥X1′

·,t − γ0 − X0′γ
∥∥∥2

2
+ λ1 ∥γ∥1 + λ2 ∥γ∥2

In words, we perform a regularized regression of the T0 vector of pre-treatment average
outcome for the treated group (X1

·,t)
T0
t=1 on the T0 × N0 matrix pre-treatment outcomes for

the control group X0⊤6 with an optional intercept γ0, which allows for level-differences be-
tween the two groups as in difference in differences. This approach is a leading example
of the vertical regression (so named by Athey et al. (2021) because it uses vertical informa-
tion in the potential outcome matrix : correlation between X0 and X1, to impute potential
outcomes). This then gives us the Vertical Regression (Synthetic Control) estimator for
6The original proposal constrains the coefficients γ be on the simplex ( γi ≥ 0,

∑
i∈C γi = 1) to avoid extrap-

olation bias
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the control potential outcome which multiplies the synthetic control weights γ with post-
treatment outcomes for control units yn

ξ̂VR
t = ⟨yn, γ̂⟩

Assumption 10 (Unconfoundedness given pre-treatment outcomes).

Y
(0)
it ⊥⊥ Wi|Yi,1:T0 ∀t > T0

where Yi,1:T0 = (Yi1, . . . , YiT0) is a T0− vector of pre-treatment outcomes for unit i.

Assumption 10 is equivalent to the unconfoundedness assumption from the cross-sectional
setting 2 with pre-treatment outcomes as covariates. It is therefore used to motivate an
unconfoundedness based approach that uses horizontal regression (so named because it
uses over-time dependence in the outcome for control outcomes in the potential outcome
matrix: correlation between y00 and X0, to impute potential outcomes).

A horizontal regression approach involves solving the following regularized regression prob-
lem

β̂ = argmin
β

∥∥yn − X0β
∥∥
2
+ λ1 ∥β∥1 + λ2 ∥β∥2

In words, we regress the average post-treatment outcome for each control unit on S−th
order lags (in the pre-treatment period). This then gives us the Horizontal Regression es-
timator for the control potential outcome. This then gives us the Horizontal Regression
(Time Series) estimator for the control potential outcome which multiplies the autoregres-
sive coefficients βs with pre-treatment outcomes for treated units X1

ξ̂HR =
〈
X1′

·,t, β̂
〉

2.3.1. Augmented Balancing for Panel Data. Two notable recent proposes attempt to
combine the strengths of vertical and horizontal regression. The augmented synthetic con-
trol method (AugSynth) (Ben-Michael, Feller, and Rothstein, 2021) combines regularized
(ridge) regressions for both Vertical and Horizonal Regression to construct a counterfactual
ξ̂AugSynth = µ̂it(X1) +

∑
i∈C,t>T0

γ̂SCi (Yit − µ̂it(X1)).

Similarly, the synthetic difference in differences (SDID) (Arkhangelsky et al., 2020) method
fits two sets of weights: time weights that equalize average post-treatment outcomes for
control units with average pre-treatment outcomes for control units, and (synthetic control)
unit weights, that equalize average pre-treatment outcome for control units with average
pre-treatment oucomes for treated units. Indeed, the latter is equivalent to the former
with unregularized OLS as the outcome model. Both methods make substantial progress in



AUGMENTED BALANCING FOR ATT 19

pooling the strengths of cross-sectional and over-time dependencies. However, both learn
vertical and horizontal regression in isolation: the estimation of the horizontal regression
(time weights) is independent of the estimation of the vertical regression (unit weights),
which potentially misses out on useful information if there are dependencies across the two
dimensions, for example if each unit’s outcome follows an autoregressive process.

To accommodate this possibility, we propose estimating an outcome model that seeks to
learn a low-rank approximation of both vertical and horizontal regressions, and estimate
unit weights on the residuals to pick up weaker factors that were missed out by the outcome
model.

Defn 2.4 (Augmented Balancing estimator for Panel Data).
We therefore use both pre-treatment data for the treated unit X1 and pre and post-treatment
X0, yn data for the control unit to train our outcome model: a matrix completion estima-
tor that uses nuclear-norm minimization to estimate a low-rank approximation of the true
untreated potential outcome matrix Y0. This motivates the following estimator which com-
bines the Matrix completion outcome model (Athey et al., 2021) with balancing weights.

ξ̂AugBal =

MC Imputation︷ ︸︸ ︷
µ̂MC
it (X, yn)+

∑
i∈C,t>T0

Reweighted debiasing term︷ ︸︸ ︷
γ̂i(Yit − µ̂MC

it (X, yn)) where

µ̂MC
it := argmin

L,Γ,∆

[
1

O
∥Y− L− Γ1′

T + 1′N∆∥2F + λ ∥L∥∗
]

where our outcome model imputation µ̂(·) combines low-rank imputation L, unit, and time
fixed effects Γ,∆ to construct an imputed Ŷ0, and γi are weights constructed using vertical
regression.

Notable cases of γi include (1) synthetic control, which uses simplex regression to approx-
imately equate average outcomes in the treatment group before treatment adoption with
weighted average outcomes in the control group, and (2) entropy regularized balancing
weights, which which uses a covariate balancing propensity score to approximately equate
average outcomes in the treatment group before treatment adoption with weighted average
outcomes in the control group, and collapses to difference in differences if parallel trends
does indeed hold. The latter is true because entropy loss−∑

i∈C γi log γi is minimised when
each unit receives equal weight 1/n0; so minimising entropy loss subject to pre-treament
balance constraints effectively modifies difference-in-differences weights as little as possible
to satisfy pre-treatment balance constraints. In stark contrast, synthetic control weights are
generically sparse and mimic a matching estimator by choosing a handful of units with posi-
tive weights. The choice between (1) synthetic control and (2) entropy regularized weights
should be based on whether the researcher believes sparsity is plausible and whether they
prefer a small number of interpretable weights (which favors synthetic control) versus min-
imal modifications to difference in differences (which favours entropy weights).
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3. Simulation Studies

In the following section, we conduct simulation studies for the cross-sectional, difference
in differences, and panel setting to evaluate the performance of augmented balancing esti-
mators relative to other standard approaches in each setting.

3.1. Cross-sectional Setting.

3.1.1. Low-Dimensional Covariates. We generate data with a variety of overlap, error
variance, and sample sizes to thoroughly evaluate the performance of estimators proposed
in sec 2.1. The DGP is adapted from the simulation DGPs in Frölich (2007) and Hainmueller
(2012) with additional non-linearity. We use 6 covariates where X1, . . . , X3 are generated
from the following multivariate normal

X1

X2

X3

 ∼ N

0
0
0

 ,

 2 1 1
1 1 −0.5
−1 −0.5 1


X4 ∼ U [−3, 3], X5 ∼ χ2

1, and X6 is Bernoulli with mean 0.5. The treatment is generated
using the linear function

W = 1[X1 + 2X2 − 2X3 −X4 − 0.5X5 +X6 + ε > 0]

where ε is drawn from one of three distributions: (1, Strong Separation) ε ∼ N (0, 30),
(2, Medium Separation, Leptokurtic)ε ∼ χ2

5 scaled to mean 0.5 and variance 67.6, and (3,
Weak Separation) ε ∼ N (0, 100). The first shows strong separation between treatment
and control group and provides a challenging case for reweighting or balancing, the second
has medium separation but heavier tails, and the the third is the most favourable case for
reweighting by virtue of weak separation. The outcome is generated according to one of
three functional forms: (1, Linear) Y = X1 +X2 +X3 −X4 +X5 +X6 + η, (2, Quadratic)
Y = (X1+X2+X5)

2+η, or (3, Non-linear) Y = X1+ sin(X2)+0.2X3X4+
√
X5+η, where

η ∼ N (0, 1). The treatment effect is 0.

With this DGP in hand, we compare the performance of several estimators in recovering
the true effect of 0. Augmented balancing involves two choices: the loss function for bal-
ancing and functional form for the outcome model. We implement three choices: entropy
balancing with a ℓ1 an OLS outcome model (Augbal(EB, OLS)) as well as a Random For-
est Outcome Model (Augbal(EB, RF)), as well as ℓ2 loss with regularized linear regres-
sion (proposed as ‘Approximate Residual Balancing’ by Athey, Imbens, and Wager (2018),
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Augbal(L2, OLS)). We benchmark these augmented balancing approaches against an ex-
tensive set of estimators: standard entropy balancing (Bal(EB), Hainmueller (2012)), stan-
dard L2 balancing (Bal(L2), Zubizarreta (2015)) augmented IPW implemented with ran-
dom forest outcome and propensity models (aipw), inverse propensity weighting imple-
mented with parametric logistic regression (ipw (logit)) and random forests (ipw (rf)),
outcome modelling with regression (OM(OLS)) and random forests (OM(RF)), and naive dif-
ference in means (Diff-Means).

We plot the boxplot of the distribution of estimates and overlay Root Mean Square Error
(RMSE) and Mean Absolute Deviation (MAD) in fig 1. We find that augmented balancing
with entropy loss (Augbal(EB, OLS)) is the best performing of the set considered across
all three of outcome and error designs, closely followed by augmented balancing with L2
loss. We report analogous results for smaller (n = 300) and larger (n = 1500, n = 5000)
datasets in figures A1, A2, A3 in appendix A and find that the rank ordering of estimators’
performance remains largely stable, except that augmented balancing incorporating more
flexible outcome models (Augbal(EB, RF)) begins to outperform its OLS counterpart with
larger datasets in some settings.

3.1.2. High-Dimensional Covariates. In appendix A.1, we apply a wide variety of cross-
sectional methods to the 2016 ACIC DGPs, which vary a wide variety of parameters per-
taining to the outcome and treatment assignment models including functional form, over-
lap, covariate importance in one or both models, and treatment effect heterogeneity in a
large, high dimensional dataset with approximately 5000 observations and 60 covariates.
We report mean absolute bias and RMSE in tables A1 and A2 respectively, and find that
augmented IPWwith flexible learners for nuisance functions and augmented balancing typ-
ically perform best across most simulation settings.
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FIGURE 1. Cross-sectional simulation study with n = 600

3.2. Two-Period Simulation. Next, we perform a simulation study for the difference-
in-differences setting to evaluate the performance of estimators outlined in sec 2.2. We
generate covariates X from a p−variate normal (where p = 10, 50 for the low and high-
dimensional settings respectively) with mean zero and covariance matrix Σ with non-zero
off-diagonal elements that are decreasing in distance |i− j|7, which emulates realistic data
generating processes with correlated covariates as in the previous section.

We pick k of the p covariates to be ‘active’ as a function of covariates X for the outcome and
selection processes, with coefficients drawn from U [−1, 1], U [−1,−1] U [0, 2], respectively
for the selection, baseline outcome Yi0 in the control and treated groups respectively (where
the latter being drawn from U [0, 2] implies that treated units begin with a level difference
in outcomes in the first period Yi0 relative to the control units, which is fairly typical in
7more specifically, Σ is characterized by a symmetric Toeplitz matrix with first row 0.5(p−1). For p = 20, this
implies that the covariance between X1 and X2 is 0.5, X1 and X3 is 0.25, and so on, such that a covariate Xj

is non-trivially correlated with approximately 6 of its neighbouring covariates.
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difference in differences applications and implies that the naive cross-sectional comparison
in the second period is badly biased). Next, we set the trend between the two periods
Yi1 − Yi0 to be a function of ρ × U [0, 4], where ρ = 0 implies that unconditional parallel
trends holds between the two groups, while ρ ̸= 0 implies that parallel trends only holds
conditional on covariates. This is the setting where the way that we adjust for covariates
matters a lot for consistency and efficiency. The true ATT is the difference in potential
outcomes for the treated group in the second period and is set to 3.

We vary the size of the dataset N , the number of covariates p, and the magnitude of par-
allel trend violation ρ across simulations to evaluate the methods under consideration.
We benchmark Augmented Balancing (abal with Entropy loss and LASSO regression for
outcome modelling) against an extensive list of estimators: Naive post-treatment com-
parison (naive), Difference in Differences using cell averages (did), Inverse Propensity-
Weighted Difference in Differences (using logistic regression ipwl and LASSO logit ipw,
Abadie (2005)), Outcome modelling for the four cell means (om using LASSO for each
cell, Heckman, Ichimura, and Todd (1998)), Augmented IPW (aipw with LASSO for both
propensity and outcome models, Chang (2020)). We report estimates in figure 2, and find
that augmented balancing collapses to OM (difference in differences) when parallel trends
is true, but is adaptive to covariate adjustment when parallel trends only holds conditional
on covariates. IPW has considerable bias even when unconditional parallel trends holds,
which suggests that inverting a logistic propensity score often performsworse than standard
difference in differences.
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FIGURE 2. Difference in Differences simulation study. N = 500 (Top) and
N = 2000 (Bottom) panel, and p = 10 (low dimensional covariates) and
p = 30 (high dimensional covariates)
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3.3. Panel Simulation. For the panel setting, we focus on benchmarking augmented
balancing approaches with a variety of related panel data estimators using realistic data
generating processes frequently encountered in the social science.

3.3.1. Simulations with latent factors. First, we study the properties of several standard
estimators under a DGP with a single strong latent factor that influences both the outcome
time series and treatment assignment under presence and absence of parallel trends with
varying amounts of noise in the outcome DGP. We simulate data for N units for T periods,
where the treatment applies only in the last period with a true treatment effect of zero.
This means that prediction error of each estimator for the final period outcome for treated
units is equal to the bias in estimating the ATT. The unobserved factor is generated as
µi ∼ N (i/N − 0.5, 0.5), with treatment assignment following Wi ∼ Bern (Λ(µi)). The
outcome time series is constructed as Yit = µi + 0.1t + εi , εi ∼ N (0, σ) under parallel
trends and Yit = µiαtt + εi , εi ∼ N (0, σ) , αt ∼ U [0.05, 0.1] under violations of parallel
trends. The latter allows for each unit to follow its own time trend scaled by its unobserved
factor µi, which means that in the aggregate, parallel trends does not hold. We evaluate
all our methods in terms of mean absolute deviation/bias (MAD) and root mean squared
error (RMSE) recovering the masked entries of the outcome matrix

MAD =
1

|T |
∑
i,t∈T

∣∣∣Yit − Ŷit

∣∣∣
RMSE =

√
1

|T |
∑
i,t∈T

(
Yit − Ŷit

)2

We compare the performance of several popular estimators: Difference in differences esti-
mated using two-way fixed effects (DID), Synthetic Control (SC), Synthetic Difference in
Differences (SDID), Augmented Synthetic Control (AugSynth), Difference in Differences
with Entropy Balancing weights (EB), Horizontal Ridge regression (HR(R)), and Augmented
balancing with Horizontal Ridge regression outcome model and Entropy Balancing unit
weights (EB+HR).

We report results in figure 3. We find that under parallel trends, Difference in Differences is
unbiased as expected, synthetic control is not (because it erroneously throws away informa-
tion by choosing non-uniform weights), while hybrid estimators such as SDID, Augsynth,
and Entropy Balancing collapse to difference in differences. When the noise level is zero,
estimating the latent factor µi is relatively easy, while for higher levels of noise, it is con-
siderably more challenging, and therefore the gap between SC and other methods shrinks.
In the absence of parallel trends (bottom three rows), Difference in Differences is highly
biased as expected, Synthetic Control has lower bias, but is strictly outperformed by other
hybrid estimators. Across the board, we find that augmented balancing performs well,
while with short panels, synthetic difference in differences and entropy balancing perform
best (with the latter narrowly outperforming the former for short panels with large parallel
trend violations and low noise).
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FIGURE 3. Panel Simulation with factor structure : Absolute bias of estima-
tors over 1000 replications. The first three rows correspond to simulations where par-
allel trends holds, while the next three correspond to simulations without parallel trends. In
each setting, each row corresponds with different levels of noise in the outcome generating
process σ, and each column corresponds with different lengths of panel data T . Average
absolute bias is indicated by the red dot, while RMSE is indicated by the blue dot.
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3.3.2. Simulations with strong autocorrelation. For each unit, we generate each time
series with the following structure

Y
(0)
it =

P∑
p=1

(apYi,t−p + bpεi,t−p)︸ ︷︷ ︸
ARMA piece

+ αi + δt︸ ︷︷ ︸
Unit/Time FE

+ t · ψj︸ ︷︷ ︸
time trend

+εit

ap ∼ U [−φ, φ] Autoregressive coefficients φ ∈ {0.01, 3}
bp ∼ U [−ϖ,ϖ] Moving Average coefficients ϖ ∈ {0.01, 3}
αi ∼ N

(
0, σ2

α

)
Unit FE σα = 2

δt ∼ N
(
0, σ2

δ

)
Time FE σδ = 5

ψj ∼ U [−ς, ς ]J Time trend coefficient (cluster structure) ς = 1, i ∈ [J ] , J ∈ 5, 50

FixingN = 50 and varying the panel length T ∈ {50, 100, 300}, we generate each time series
has an autoregressive moving average component (which encodes time series dependency),
which can either be very strong (with ϖ = φ = 3) or very weak (with ϖ = φ = 0.01), unit
and time-specific shocks, and time trends, which is drawn from a mixture with low rank
(J = 5) or idiosyncratic (J = 50). This flexible configuration allows us to control whether
vertical or horizontal regression is more useful in forecasting missing potential outcomes.
When ϖ,φ = 3 and time trends are not low rank (J = N = 50), horizontal regression can
be expected to perform relatively well, while when ϖ,φ = 0.01 and J = 5, the data has
low-rank structure that means vertical regression can be expected to perform better. Once
we generate untreated potential outcomes Y (0)

it , we randomly select K ∈ {1, 10, 25} units
to be ’treated’ at 0.8T and mask the corresponding unit × time period observations from
the input matrix Y0, so the treatment effect is 0.

We compare several widely used panel data methods along these metrics. The methods
can be classified as belonging to vertical methods: K Nearest Neighbours (KNN), Synthetic
Control (SC), Vertical Elastic Net (ENET(V)), horizontal methods: Horizontal Elastic Net
(ENET(H)), and hybrid methods: Difference-in-Differences (DID), Dynamic Factor Models
(DFM), Synthetic Difference-in-Differences (SDID), Augmented Synthetic Control (Augbal
(HR + VR)), and Augmented Balancing with a Matrix Completion outcome model paired
with synthetic control weights fit on raw pre-treatment data (Augbal (MC + VR)) and resid-
ualized pre-treatment data (Augbal (MC + Resid)).

We report results from our simulations in 4, where we fix N = 50 and 10 units ever treated
8. We find that across a wide range of settings, hybrid methods such as SDID, and abal
outperform pure vertical and horizontal regression methods, and augmented balancing es-
timators outperform pure outcome modelling methods (including those that can harness
both vertical and horizontal patterns, such as DFM, MC, and DID). Among the augmented

8We report similar resuts for 1 and 25 treated units fixing N = 50 in A5, A6, and larger N = 100 units
simulations in A7, A8, and A9.
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balancing methods, we find that when time series component is low-rank, a matrix com-
pletion outcome model performs better than a ridge time series outcome model, while the
opposite is true when time series component is high rank, with less separation between
them when the data is strongly serially autocorrelated. These simulations suggest that
augmented balancing substantially outperforms a wide variety of existing methods.
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FIGURE 4. Panel Simulation with Serial Correlation: Absolute bias of estima-
tors over 1000 replications Columns correspond to strong and weak serial correlation
(i.e. large and small values of the ARMA coefficients). The top three rows correspond to a
low-rank structure in the time trends (5 clusters), while the bottom three correspond with
a high-rank structure on time trends, with the three rows corresponding to the panel length
(50, 100, and 300 time periods respectively). Average absolute bias is indicated by the red
dot, while RMSE is indicated by the blue dot.
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4. Empirical Applications

In this section, we illustrate the use of augmented balancing alongside some well known
estimators.

4.1. Application to cross-sectional data: LaLonde (1986). Webeginwith an
application to the celebrated LaLonde (1986) and Dehejia and Wahba (1999) job-training
program data, where the experimental benchmark is known and observational estimators
are frequently evaluated on their performance at uncovering the experimental benchmark
when experimental controls are replaced with observational controls. We focus on the
Lalonde observational sample where control units are drawn from the Panel Study of In-
come Dynamics (PSID), which gives us access to 2490 control units to estimate the coun-
terfactual potential outcome under control for the 185 experimental units in the sample.
We illustrate both experimental and observational results in , where we draw a dotted hor-
izontal line at the difference in means experimental estimate of 1794. There is very little
difference across methods in estimating the experimental result (in red), while performance
varies widely for the observational data (in blue). In particular, difference in means is badly
biased, and linear regression adjustment fares poorly as well. Balancing, Augmented IPW,
and Augmented Balancing perform best at recovering the experimental benchmark.
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FIGURE 5. Estimates from Lalonde experimental and observational samples.
Relative to the experimental benchmark of 1794, Augmented Balancing with
Entropy loss and Augmented IPW have lowest bias, with the former having
substantially lower variance.

4.2. Application to Difference in Differences: Ladd and Lenz (2009).
Next, we apply several existing methods and augmented balancing to the two-period dif-
ference in differences study of Ladd and Lenz (2009), who study the effects of newspaper
endorsements on voting by leveraging a unique dataset of individual level voter behaviour
and newspaper readership paired with the unexpected endorsement of Tony Blair by promi-
nent English news papers. Ladd and Lenz study the effects of the Blair endorsement by the
Sun newspaper by comparing the difference in labour voting rates in 1997 and 1992 among
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FIGURE 6. Estimates of difference in differences estimates for Ladd and Lenz
(2009).

Sun readers with non-readers. The original study reports estimates from difference in dif-
ferences using linear regression, and lagged dependent variable adjustment. We report
estimates in figure 6, and find that the estimators largely agree with the original point es-
timate of increasing the probability of voting for the labour party by 10 percentage points.

4.3. Application to Panel Data: Heersink, Peterson, and Jenkins (2017).
Finally, we apply several existing methods and panel augmented balancing to the panel data
analysis in Heersink, Peterson, and Jenkins (2017), who study retrospective voting in the
aftermath of a natural disaster by estimating th effect of the great Mississippi flood of 1927
on county level vote shares in the South for the Republican Party in 1928. They use dif-
ference in differences as well as synthetic control methods in their paper. We apply several
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estimators including the augmented balancing estimator proposed in the previous section
to this setting and report the event study results in figure 7. We find that difference in dif-
ferences may be biased by the presence of erratic pre-trends, while imputation, balancing,
and augmented balancing largely agree on the estimate of between 10 to 15% decrease in
republican vote shares in flooded counties.

5. Conclusion

In this paper, we propose a comprehensive framework that nests several disparate causal
inference strategies into a common structure that incorporates flexible machine-learning
based outcome modelling augmented with covariate balancing weights. We provide an
overview of several specific instantiations of these ideas in the cross-sectional and panel
data settings, and extend this approach to the two-period difference in differences. Fi-
nally, we perform extensive simulation studies for cross-sectional, difference-in-differences,
and panel data settings to benchmark the performance of several state-of-the-art estima-
tors and find that augmented balancing based estimators weakly outperform pure outcome
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modelling and inverse-propensity weighting based estimators. We provide performant im-
plementations of these estimators in the abal R package.
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Appendix A. Additional Simulation Studies

A.1. cross-sectional: ACIC Studies for ebal. In this section, we apply the set of
estimators in 2.1 to the 2016 ACIC data analysis competition (Dorie et al., 2019)[appdx A.1]
synthetic datasets, which provide a wide variety of realistic data settings that researchers
face in applied work. The simulations all generate outcome and treatment assignment
using a dataset with 4802 observations and 58 covariates. The 77 simulation settings vary
the following six parameters over 100 replications.

• Treatment model (trtM) ∈ { Linear, polynomial, step }, which varies the treatment
assignment model to either be linear in covariates, incorporate polynomial terms,
or step functions.

• Response model (yM) ∈ { Linear, exponential, step } which varies the outcome
model to either be linear in covariates, incorporate polynomial terms passed through
exp, or step functions.

• Treatment/Response Alignment (algn) ∈ { None, Low, High } governs the prob-
ability with which covariates entering the treatment model also enter the outcome
model, where low gives 25% probability and high gives 75% probability

• Heterogeneity (het) ∈ { None, Low, High } governs with treatment effect het-
erogeneity, where None corresponds with a constant effect, low corresponds with
heterogeneity along 3 covariates, and high corresponds with heterogeneity along 6
covariates.

• Overlap (ovr) ∈ { Full, Penalty } Full indicates moderate coefficients in treatment
assignment model logit(Pr (W = 1 | X)), while penalty adds large negative values
of randomly chosen covariates such that some combinations have deterministic as-
signment

• Treated % (trtP) ∈ [low = 35%, high = 65%] is the share of treated units in the
population

For each simulation, we compute the ATT using

• ols: Linear regression
• ipw: Inverse Propensity Weighting using logistic regression that incorporates all
covariates

• aipwRF: Augmented IPW that uses Honest Random Forests to estimate both nui-
sance functions

• ebalOl: Entropy balancing on the first moment of all covariates using the NR-
implementation of Entropy Balancing

• ebalNew: Entropy balancing on first and second moments of all covariates using
an autodiff-based implementation of Entropy Balancing. This problem is infeasible
with the old implementation.

• hbal: Hierarchically regularized entropy balancing as proposed by Xu and Yang
(2022) on first and second moments

• balHD: Augmented Balancing pairing regularized (elastic net) regression with L2
balancing weights as proposed by Athey, Imbens, and Wager (2018)
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• augbalE: Augmented balancing pairing random forest with Entropy balancing on
first and second moments of all covariates

We report the Bias and RMSE across 100 simulations under each of the 77 combinations in
tables A1 and A2 (with best performers bolded in each row). We find that aipwRF, augbalE,
and ebalNew perform best in terms of Bias and RMSE. aipwRF performs well across a variety
of settings because the random forest adapts to different treatment and outcome model
functional forms. When one of the outcome and treatment models are smooth (linear or
polynomial), the augmented balancing estimator also performs well and is typically on par
with the AIPW estimator.

TABLE A1. Bias across ACIC simulation settings. Best performers within order
of 10−2 bolded.

trtM yM algn het ovr trtP ols ipw aipwRF ebalOld ebalNew hbal balHD augbalE

lin exp high high pen low 0.787 0.998 0.184 0.578 0.315 2.46 0.437 0.438
lin exp low high pen low 0.727 1.114 0.117 0.59 0.274 2.563 0.447 0.348
lin exp high high pen high 0.877 0.74 0.157 0.319 0.198 4.058 0.246 0.157
lin exp low high pen high 0.827 1.108 0.109 0.428 0.238 4.78 0.303 0.162
lin lin high high pen low 0.249 0.221 0.147 0.176 0.123 2.214 0.149 0.417
lin lin high none pen low 0.174 0.242 0.176 0.179 0.121 2.187 0.152 0.474
pol exp high high full low 0.833 0.715 0.29 0.705 0.26 3.66 0.704 0.187
pol exp high high pen low 0.828 0.73 0.267 0.711 0.248 2.433 0.686 0.372
pol exp none high pen low 0.169 0.173 0.075 0.139 0.096 1.357 0.132 0.165
pol exp low high pen low 0.719 0.798 0.187 0.631 0.247 2.335 0.551 0.314
pol exp high high pen high 0.893 0.764 0.216 0.532 0.241 4.099 0.504 0.207
pol exp none high pen high 0.215 0.575 0.076 0.113 0.077 4.614 0.098 0.056
pol exp low high pen high 0.796 0.89 0.158 0.479 0.246 4.534 0.389 0.168
pol exp low high full low 0.779 0.641 0.249 0.625 0.224 3.117 0.631 0.176
pol exp low high full high 0.824 0.55 0.205 0.605 0.178 4.985 0.543 0.169
pol exp high high full high 0.868 0.619 0.244 0.514 0.177 4.807 0.601 0.216
pol exp low low pen low 0.235 0.254 0.095 0.227 0.115 1.966 0.198 0.199
pol exp high low pen low 0.399 0.501 0.177 0.374 0.157 2.167 0.372 0.271
pol exp low low full low 0.252 0.232 0.108 0.226 0.103 2.18 0.235 0.106
pol exp high low full low 0.516 0.468 0.186 0.454 0.176 3.474 0.467 0.183
pol exp low low pen high 0.36 0.571 0.1 0.304 0.159 5.368 0.221 0.121
pol exp high low pen high 0.466 0.404 0.173 0.317 0.194 4.736 0.372 0.147
pol exp low low full high 0.308 0.243 0.106 0.186 0.109 5.316 0.233 0.102
pol exp high low full high 0.507 0.407 0.181 0.339 0.177 4.975 0.399 0.182
pol exp high none pen low 0.283 0.723 0.159 0.328 0.196 1.526 0.291 0.314
pol lin high high pen low 0.881 0.875 0.294 0.81 0.313 2.538 0.821 0.406
pol lin low high pen low 0.835 0.902 0.208 0.754 0.298 2.382 0.71 0.432
pol lin high high pen high 0.872 2.169 0.24 0.694 0.204 4.068 0.617 0.183
pol lin low high pen high 0.88 0.922 0.137 0.439 0.222 4.32 0.398 0.181
pol step low high pen low 0.826 0.954 0.182 0.72 0.327 2.397 0.652 0.361
pol step high high pen low 0.898 0.921 0.277 0.814 0.302 2.346 0.835 0.441
pol step low high full low 0.803 0.732 0.216 0.693 0.254 3.259 0.725 0.155
pol step high high full low 0.873 0.817 0.258 0.808 0.27 3.897 0.806 0.175
pol step low high pen high 0.85 0.894 0.134 0.66 0.309 4.149 0.504 0.2
pol step high high pen high 0.834 1.164 0.236 0.775 0.291 4.943 0.662 0.218
pol step low high full high 0.784 0.583 0.163 0.598 0.173 5.262 0.56 0.17
pol step high high full high 0.91 0.759 0.235 0.689 0.237 4.965 0.742 0.245
pol step low low pen low 0.217 1.093 0.087 0.235 0.133 1.823 0.205 0.151
pol step high low pen low 0.416 0.439 0.159 0.432 0.191 2.263 0.403 0.241
pol step low low full low 0.271 0.275 0.104 0.262 0.138 2.201 0.269 0.104
pol step high low full low 0.493 0.472 0.154 0.464 0.158 3.65 0.477 0.136
pol step low low pen high 0.266 0.344 0.089 0.242 0.158 4.843 0.205 0.101
pol step high low pen high 0.41 0.574 0.163 0.494 0.223 4.662 0.388 0.157
pol step low low full high 0.254 0.228 0.093 0.216 0.134 4.993 0.225 0.098
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TABLE A1. Bias across ACIC simulation settings. Best performers within order
of 10−2 bolded. (continued)

trtM yM algn het ovr trtP ols ipw aipwRF ebalOld ebalNew hbal balHD augbalE

pol step high low full high 0.468 0.443 0.163 0.494 0.196 5.105 0.444 0.204
step exp low high pen low 0.803 0.901 0.145 0.712 0.364 2.767 0.587 0.335
step exp high high pen low 0.878 1.006 0.171 0.826 0.515 2.356 0.761 0.293
step exp low high full low 0.928 0.69 0.111 0.682 0.456 3.836 0.71 0.115
step exp high high full low 0.91 0.733 0.153 0.739 0.497 3.598 0.743 0.132
step exp low high pen high 0.878 0.662 0.121 0.478 0.27 4.778 0.366 0.149
step exp high high pen high 0.959 0.858 0.17 0.604 0.366 4.678 0.548 0.186
step exp low high full high 0.876 0.507 0.152 0.599 0.375 4.838 0.52 0.177
step exp high high full high 0.978 0.659 0.171 0.697 0.414 4.855 0.675 0.199
step exp low low pen low 0.275 0.244 0.107 0.202 0.157 2.02 0.22 0.139
step exp high low pen low 0.42 0.337 0.103 0.345 0.237 2.29 0.328 0.151
step exp low low full low 0.218 0.172 0.074 0.17 0.096 1.944 0.17 0.086
step exp high low full low 0.616 0.538 0.141 0.479 0.354 3.341 0.541 0.129
step exp low low pen high 0.403 0.478 0.111 0.286 0.188 4.502 0.266 0.106
step exp high low pen high 0.518 0.618 0.134 0.404 0.281 4.589 0.366 0.148
step exp low low full high 0.337 0.233 0.09 0.197 0.168 5.339 0.233 0.098
step exp high low full high 0.586 0.414 0.161 0.31 0.254 4.928 0.413 0.192
step step high high pen low 0.846 0.787 0.158 0.803 0.532 2.189 0.771 0.325
step step high high pen high 0.934 1.403 0.182 0.665 0.507 4.28 0.644 0.259
step step low high pen low 0.794 0.722 0.118 0.685 0.492 2.21 0.664 0.264
step step low high full low 0.777 0.685 0.131 0.689 0.467 3.19 0.697 0.152
step step high high full low 0.962 0.846 0.167 0.859 0.595 4.508 0.861 0.177
step step low high pen high 0.805 0.876 0.086 0.519 0.415 4.333 0.487 0.195
step step low high full high 0.829 0.49 0.121 0.576 0.349 4.76 0.492 0.155
step step high high full high 0.923 0.606 0.128 0.713 0.39 4.909 0.64 0.183
step step low low pen low 0.283 0.285 0.078 0.271 0.205 1.919 0.259 0.17
step step high low pen low 0.461 0.445 0.117 0.398 0.298 2.631 0.421 0.17
step step low low full low 0.25 0.226 0.054 0.225 0.162 2.247 0.234 0.068
step step high low full low 0.483 0.455 0.117 0.472 0.323 3.371 0.456 0.121
step step low low pen high 0.324 0.292 0.073 0.25 0.204 5.156 0.237 0.108
step step high low pen high 0.46 0.467 0.12 0.442 0.271 4.707 0.365 0.139
step step low low full high 0.193 0.175 0.067 0.113 0.126 4.756 0.17 0.075
step step high low full high 0.483 0.474 0.105 0.552 0.346 4.723 0.455 0.202

TABLE A2. rmse across ACIC simulation settings. Best performers within or-
der of 10−2 bolded.

trtM yM algn het ovr trtP ols ipw aipwRF ebalOld ebalNew hbal balHD augbalE

lin exp high high pen low 0.828 2.232 0.232 0.863 0.502 3.274 0.524 0.624
lin exp low high pen low 0.754 2.693 0.151 0.745 0.41 3.389 0.531 0.472
lin exp high high pen high 0.935 1.897 0.205 0.458 0.277 4.565 0.307 0.21
lin exp low high pen high 0.871 3.204 0.142 0.665 0.307 5.135 0.382 0.208
lin lin high high pen low 0.329 0.316 0.188 0.253 0.188 2.705 0.211 0.536
lin lin high none pen low 0.272 0.604 0.222 0.291 0.231 2.608 0.245 0.684
pol exp high high full low 0.912 0.793 0.344 0.77 0.343 4.225 0.778 0.245
pol exp high high pen low 0.896 0.859 0.328 0.829 0.315 2.942 0.767 0.536
pol exp none high pen low 0.262 0.274 0.099 0.216 0.145 1.723 0.205 0.265
pol exp low high pen low 0.766 1.288 0.231 0.757 0.331 3.184 0.628 0.453
pol exp high high pen high 0.987 1.048 0.262 0.641 0.302 4.321 0.6 0.262
pol exp none high pen high 0.297 3.302 0.092 0.163 0.104 4.989 0.136 0.073
pol exp low high pen high 0.838 1.731 0.21 0.591 0.333 4.822 0.463 0.212
pol exp low high full low 0.851 0.712 0.303 0.705 0.306 3.618 0.704 0.245
pol exp low high full high 0.875 0.658 0.247 0.735 0.248 5.151 0.642 0.209
pol exp high high full high 0.929 0.692 0.297 0.577 0.255 5.108 0.68 0.259
pol exp low low pen low 0.299 0.372 0.128 0.302 0.163 2.411 0.262 0.298
pol exp high low pen low 0.495 1.06 0.222 0.48 0.211 2.683 0.461 0.467
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TABLE A2. rmse across ACIC simulation settings. Best performers within or-
der of 10−2 bolded. (continued)

trtM yM algn het ovr trtP ols ipw aipwRF ebalOld ebalNew hbal balHD augbalE

pol exp low low full low 0.387 0.365 0.156 0.364 0.169 2.704 0.371 0.16
pol exp high low full low 0.68 0.648 0.239 0.628 0.262 3.968 0.646 0.267
pol exp low low pen high 0.529 1.488 0.128 0.417 0.214 5.59 0.289 0.173
pol exp high low pen high 0.627 0.526 0.226 0.388 0.287 5.071 0.506 0.202
pol exp low low full high 0.425 0.388 0.147 0.3 0.16 5.45 0.351 0.13
pol exp high low full high 0.634 0.524 0.234 0.414 0.241 5.199 0.52 0.226
pol exp high none pen low 0.374 2.923 0.2 0.443 0.263 1.828 0.389 0.426
pol lin high high pen low 0.943 1.054 0.332 0.898 0.437 3.094 0.904 0.703
pol lin low high pen low 0.886 1.33 0.264 0.852 0.419 3.027 0.788 0.57
pol lin high high pen high 0.921 14.358 0.272 0.853 0.28 4.461 0.706 0.232
pol lin low high pen high 0.946 2.011 0.18 0.566 0.319 4.728 0.517 0.268
pol step low high pen low 0.894 2.061 0.24 0.833 0.439 2.906 0.727 0.607
pol step high high pen low 0.93 1.409 0.321 0.859 0.407 2.929 0.879 0.605
pol step low high full low 0.839 0.79 0.251 0.739 0.357 3.917 0.786 0.205
pol step high high full low 0.926 0.878 0.299 0.874 0.367 4.355 0.87 0.241
pol step low high pen high 0.907 1.383 0.177 0.794 0.405 4.389 0.58 0.31
pol step high high pen high 0.87 2.269 0.28 0.877 0.372 5.117 0.733 0.314
pol step low high full high 0.822 0.677 0.195 0.707 0.251 5.755 0.635 0.202
pol step high high full high 0.971 0.842 0.279 0.762 0.337 5.356 0.82 0.292
pol step low low pen low 0.287 8.838 0.112 0.344 0.173 2.503 0.28 0.252
pol step high low pen low 0.52 0.553 0.193 0.534 0.257 2.817 0.509 0.392
pol step low low full low 0.426 0.432 0.147 0.415 0.211 2.595 0.43 0.159
pol step high low full low 0.622 0.608 0.199 0.597 0.253 4.228 0.616 0.185
pol step low low pen high 0.382 0.476 0.115 0.323 0.204 5.484 0.286 0.129
pol step high low pen high 0.534 1.524 0.207 0.861 0.283 4.994 0.524 0.197
pol step low low full high 0.347 0.334 0.131 0.302 0.22 5.34 0.33 0.157
pol step high low full high 0.575 0.543 0.197 0.573 0.307 5.667 0.542 0.249
step exp low high pen low 0.929 1.45 0.226 0.883 0.472 3.681 0.677 0.94
step exp high high pen low 0.956 2.224 0.242 0.912 0.602 2.901 0.841 0.515
step exp low high full low 0.993 0.797 0.163 0.751 0.555 4.58 0.808 0.199
step exp high high full low 0.994 0.843 0.23 0.846 0.61 4.209 0.855 0.213
step exp low high pen high 0.933 0.942 0.166 0.558 0.365 5.001 0.449 0.229
step exp high high pen high 1.037 1.195 0.215 0.728 0.456 5.06 0.654 0.251
step exp low high full high 0.947 0.623 0.214 0.758 0.496 5.071 0.636 0.256
step exp high high full high 1.064 0.777 0.229 0.811 0.496 5.295 0.792 0.263
step exp low low pen low 0.367 0.348 0.14 0.297 0.232 2.437 0.322 0.203
step exp high low pen low 0.556 0.487 0.14 0.491 0.332 2.787 0.461 0.202
step exp low low full low 0.308 0.248 0.095 0.24 0.149 2.485 0.249 0.114
step exp high low full low 0.805 0.731 0.236 0.642 0.497 3.949 0.743 0.24
step exp low low pen high 0.51 0.96 0.157 0.401 0.275 4.852 0.376 0.149
step exp high low pen high 0.711 1.332 0.183 0.528 0.367 4.999 0.477 0.241
step exp low low full high 0.468 0.366 0.123 0.313 0.262 5.529 0.369 0.142
step exp high low full high 0.734 0.531 0.253 0.441 0.345 5.273 0.523 0.266
step step high high pen low 0.894 0.9 0.217 0.885 0.634 2.641 0.856 0.516
step step high high pen high 0.993 4.681 0.247 0.785 0.601 4.708 0.744 0.353
step step low high pen low 0.828 0.814 0.158 0.73 0.562 2.673 0.713 0.367
step step low high full low 0.809 0.759 0.187 0.763 0.555 3.731 0.778 0.253
step step high high full low 1.012 0.926 0.223 0.935 0.677 5.012 0.94 0.286
step step low high pen high 0.853 1.549 0.124 0.627 0.51 4.679 0.567 0.275
step step low high full high 0.877 0.608 0.181 0.747 0.462 5.212 0.612 0.215
step step high high full high 0.978 0.711 0.185 0.798 0.478 5.202 0.734 0.242
step step low low pen low 0.416 0.463 0.105 0.407 0.301 2.31 0.387 0.283
step step high low pen low 0.566 0.547 0.158 0.494 0.39 3.163 0.521 0.23
step step low low full low 0.367 0.355 0.075 0.372 0.253 2.766 0.368 0.101
step step high low full low 0.636 0.623 0.187 0.664 0.469 4.004 0.634 0.204
step step low low pen high 0.444 0.391 0.104 0.314 0.264 5.426 0.323 0.147
step step high low pen high 0.596 0.648 0.164 0.532 0.378 5.137 0.47 0.19
step step low low full high 0.284 0.26 0.096 0.157 0.184 4.952 0.25 0.114
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FIGURE A1. Cross-sectional simulation study with n = 300

step step high low full high 0.636 0.613 0.147 0.688 0.454 5.382 0.591 0.294

A.2. cross-sectional: Hainmueller (2012) simulation.
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FIGURE A2. Cross-sectional simulation study with n = 1500
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FIGURE A3. Cross-sectional simulation study with n = 5000
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A.3. Additional Panel Simulation Results.

A.3.1. DGPs visualised.
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FIGURE A4. Simulation examples under strong and weak autocorrelation
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A.3.2. N = 50 simulations.
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FIGURE A5. 1 Treated Unit Simulation Results
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FIGURE A6. 25 Treated Units Simulation Results
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A.3.3. N = 100 simulations.

FIGURE A7. 100 units: 1 Treated Unit Simulation Results
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FIGURE A8. 100 Units: 10 Treated Units Simulation Results
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FIGURE A9. 100 Units: 25 Treated Units Simulation Results
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Appendix B. Computation

Bach et al. (2021), Wickham (2010), Dowle et al. (2018), Bergé (2018), Athey, Tibshirani,
and Wager (2019), and Fu, Narasimhan, and Boyd (2020)
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